离散数学 ***

Exercise Set 1

姓名: *** 学号: ***

2019年11月1日

1 证明 $\max(r,s) + \min(r,s) = r + s$

证明. 采用案例分析法证明, 存在两种情况:

情况 1. 当 $r \ge s$ 时, $\max(r,s) = r, \min(r,s) = s$,此时 $\max(r,s) + \min(r,s) = r + s$,原命题成立情况 2. 当 r < s 时, $\max(r,s) = s, \min(r,s) = s$,此时 $\max(r,s) + \min(r,s) = s + r$,原命题成立可见,原命题在所有情形下都成立

2 无理数的无理数次方,结果是无理数吗?以 $\sqrt{2}^{\sqrt{2}}$ 为例

证明. 采用案例分析法证明, 存在两种情况:

情况 1. 设 $\sqrt{2}^{\sqrt{2}}$ 是有理数. 已知 $\sqrt{2}$ 是无理数,但是 $\sqrt{2}^{\sqrt{2}}$ 即无理数的无理数次方结果不为无理数

情况 2. 设 $\sqrt{2}^{\sqrt{2}}$ 是无理数. 有 $(\sqrt{2}^{\sqrt{2}})$ 的 $\sqrt{2}$ 次方 = $\sqrt{2}^2$ = 2, 已知 $\sqrt{2}$ 和 $\sqrt{2}^{\sqrt{2}}$ 均为无理数,故无理数的无理数次方结果不为无理数.

可见, 无理数的无理数次方, 结果不都为无理数.

3 使用案例分析法证明

$$|r+s| \le |r| + |s|$$

对所有实数 r,s 成立

证明,采用案例分析法证明,存在两种情况:

情况 1. 当 r+s=0 时,即 r=-s,此时 |r+s|=|r|+|s|

情况 2. 当 r+s > 0 时

情况 2.1. r > 0.s > 0. 此时 |r+s|=|r|+|s|=r+s

情况 2.2. r > 0,s < 0. 此时 |r + s| = r + s = r - |s|, |r| + |s| = r + |s|, 易得 |r| + |s| > |r + s|

情况 2.3. r < 0,s > 0. 此时 |r + s| = r + s = s - |r|, |r| + |s| = s + |r|, 易得 |r| + |s| > |r + s|

情况 3. 当 r+s < 0 时

情况 3.1. r < 0,s < 0. 此时 |r+s|=-(r+s),|r|+|s|=-r-s, 易得 |r+s|=|s|+|r|

离散数学 ***

情况 3.2. r <0,s >0. 此时 |r+s|=|r|-s,|r|+|s|=|r|+s,易得 |r+s|<|r|+|s|情况 3.3. r >0,s <0. 此时 |r+s|=|s|-r,|r|+|s|=|s|+r,易得 |r+s|<|r|+|s|因此,对任何实数,都有

 $|r+s| \le |r| + |s|$

4 证明:存在无理数 a,使得 $a^{\sqrt{3}}$ 是有理数

证明. 采用案例分析法,以 $\sqrt[3]{2}^{\sqrt{3}}$ 为例

情况 1. $\sqrt[3]{2}^{\sqrt{3}}$ 是无理数

即设 $a=\sqrt[3]{2}^{\sqrt{3}}$, 因此 $a^{\sqrt{3}}=\sqrt[3]{2}^3=2^1=2,2$ 是有理数.

情况 2. $\sqrt[3]{2}^{\sqrt{3}}$ 是有理数

即设 $a=\sqrt[3]{2}$, 因此 $a^{\sqrt{3}}=\sqrt[3]{2}^{\sqrt{3}}$, 是有理数

因此,无论 $\sqrt[3]{2}^{\sqrt{3}}$ 是有理数还是无理数,都存在无理数 a 使得 $a^{\sqrt{3}}$ 是有理数,原命题得证

5 证明:对任意 n>0,如果 a^n 是偶数,那么 a 是偶数

证明. 采用反证法,假设命题是假的,即 a^n 是偶数,那么 a 是奇数,设 a=2k+1 那么 a^n =(2k+1)n. 已知奇数的任意 n 次方必为奇数,即 a^n 是奇数,与原命题相矛盾. 因此对任意 n>0, 如果 a^n 是偶数,那么 a 是偶数,原命题得证.

6 证明:如果 a*b = n,那么 a 或 b 一定有一个满足 $\leq \sqrt{n}$,其中 a,b,n 是非负实数.

证明. 采用反证法, 假设 a,b 都 $> \sqrt{n}$

那么 $a*b>\sqrt{n}*\sqrt{n}=n$, 与原命题相矛盾. 因此如果 a*b=n, 那么 a 或 b 有一个满足 $\leq \sqrt{n}$,原命题得证.

- 7 n 是非负整数,
 - (a) 解释:如果 n^2 是偶数—即是 2 的倍数— 那么 n 是偶数.
 - (b) 解释: 如果 n^2 是 3 的倍数, 那么 n 一定是 3 的倍数.
 - **a.** 我们证明逆否命题:如果 n 是奇数,那么 n^2 是奇数 假设 n 是奇数,设 n=2k+1, $n^2=(2k+1)^2=4k^2+4k+1$,结果为奇数 因此逆否命题成立,原命题得证.
 - **b.** 我们证明逆否命题: 如果 n 不是 3 的倍数,那么 n^2 不是 3 的倍数。只有以下两种情况: 第一种情况: 设 n=3k+1,那么 $n^2=(3k+1)^2=9k^2+6k+1$,很明显, n^2 不是 3 的倍数 第二种情况: 设 n=3k+2,那么 $n^2=(3k+2)^2=9k^2+12k+4$,很明显, n^2 也不是 3 的倍数 因此逆否命题成立,原命题得证。

姓名: ***; 学号: ***

8 证明 $\sqrt{3}$ 是无理数

证明. 我们使用反证法证明,即设 $\sqrt{3}$ 是有理数,那么我们可以将 $\sqrt{3}$ 写成最简分式: $\frac{n}{m}$ 两边同时平方,得 $3=\frac{n^2}{m^2},3m^2=n^2$

易知 n 是 3 的倍数, 所以 n^2 是 9 的倍数

又因为 $n^2=3m^2$,故 $3m^2$ 也是 9 的倍数,即 m^2 为 3 的倍数,由证明可得 m 也为 3 的倍数 n,m 同时为 3 的倍数,故 $\frac{n}{m}$ 不可能为最简分式,与条件相矛盾 故 $\sqrt{3}$ 是无理数,原命题得证。

9 证明 $\log_4 6$ 是无理数

证明. 我们使用反证法证明,即 $\log_4 6$ 是有理数,设 $\log_4 6 = \frac{n}{m}/$, $\frac{n}{m}$ 是最简分数。其中 n,m 是整数

有: $4^{\frac{n}{m}} = 6$

有: $4^n = 6^m$

有: $2^{2n-m} = 3^m$

因为 log₄ 6 > 1, 所以 n>m, 故 2n-m>0 且 2n-m 为整数

因此左边是偶数,右边是奇数,必不相等。故 $\frac{n}{m}$ 并不是最简分式,与条件矛盾

故 log₄ 6 是无理数,原命题得证

10 证明 $\log_0 12$ 是无理数

证明. 我们使用反证法证明,即 $\log_9 12$ 是有理数,设 $\log_9 12 = \frac{n}{m}$, $\frac{n}{m}$ 是最简分数。其中 n,m 是整数

有: $9^{\frac{n}{m}} = 12$

有: $9^n = 12^m$

有: $3^{2n-m} = 4^m$

因为 log₉ 12 > 1, 所以 n>m, 故 2n-m>0 且 2n-m 为整数

因此左边是奇数,右边是偶数,必不相等。故 $\frac{n}{m}$ 并不是最简分式,与条件矛盾

故 log₉ 12 是无理数,原命题得证

11 证明 $\log_{12} 18$ 是无理数

证明. 我们使用反证法证明,即 $\log_{12}18$ 是有理数,设 $\log_{12}18=\frac{n}{m}$, $\frac{n}{m}$ 是最简分数。其中 n,m 是整数

有: $12^{\frac{n}{m}} = 18$

有: $12^n = 18^m$

有: $2^{2n-m} = 3^{2m-n}$

因为 2n-m, 2m-n 均为整数, 故左边不可能等于右边

故 $\frac{n}{m}$ 并不是最简分式,与条件矛盾。故 $\log_4 6$ 是无理数,原命题得证

离散数学 ***

12 如果 k 为正整数, 当且仅当 k 各位数上的总和能被 9 整除, 此时 k 也能被 9 整除

证明. 设 $k = a_n a_{n-1} a_1 a_0$

得 $k = a_n * 10^n + a_{n-1} * 10^{n-1} \dots a_1 * 10 + a_0 * 1$

得 $k = a_n * (10^n - 1) + a_{n-1} * (10^{n-1} - 1)......a_1 * (10 - 1) + a_0 * (1 - 1) + a_n + a_{n-1} + + a_0$ 先证充分性,即当 k 各位数上的总和能被 9 整除,此时 k 也能被 9 整除。显而易见,当 k 各位数上的总和能被 9 整除时, $a_n + a_{n-1} + + a_0$ 能被 9 整除,此时 k 也能被 9 整除。

再证必要性,即当 k 能被 9 整除时,k 各位数上的总和也能被 9 整除。同理,要想 k 被 9 整除, $a_n + a_{n-1} + \dots + a_0$ 也要能被 9 整除,即各位数的总和要被 9 整除。

综上,原命题得证。

13 证明如果 r 是无理数, \sqrt{r} 也是无理数

证明. 我们使用逆否命题来证明,即 \sqrt{r} 是有理数,r 也是有理数设 $\sqrt{r}=\frac{n}{m}$ (其中 n,m 均为整数),则 $r=\frac{n^2}{m^2}$ 显而易见,r 必是有理数,逆否命题得证,原命题得证。

14 证明 $\sqrt{3}$ 是无理数

证明. 我们用反证法证明,即假设 $\sqrt{3}$ 是有理数

设 $\sqrt{3}$ 的最简分式为 $\frac{n}{m}$ (n,m 为整数),两边平方,得 $3=\frac{n^2}{m^2},3m^2=n^2$

因此有 n 为 3 的倍数,故 n^2 为 9 的倍数,又 $3m^2=n^2$,有 m^2 为 3 的倍数,故 m 也为 3 的倍数 因此为 $\frac{n}{m}$ 不为 $\sqrt{3}$ 的最简分式,与原假设矛盾,故 $\sqrt{3}$ 为无理数,原命题得证。

15 证明:任意 6 个人中,总是 3 个人互相认识或互相不认识

证明. 设 6 个人为 A,B,C,D,E,F 六个点,由 A 出发,至少存在三个认识或不认的,我们不妨设 AB,AC,AD 是认识的。接下来,如果 BC 或 CD 认识,则不用证明,显然存在 3 个互相认识。如果 BC,BD 都不认识,有两种情况: 1,BD 认识,则 A,B,D 相互认识; 2.BD 不认识,则 B,C,D 相互不认识。

原命题得证。

姓名: ***; 学号: ***